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Presentation Overview 

● A PFRC-type rocket engine is expected to produce ~ 1 MW/m of 

power and ~30 Nts thrust at Isp~ 106 s, suitable for many 

interplanetary missions. 

● By burning D-3He fuel, PFRC reactors could produce 100x fewer 

neutrons/MW than a D-T burning reactor. 

● We describe methods to achieve the lower neutron wall load and 

evaluate the shielding requirements for the residual neutron flux: 

o The materials in the PFRC reactor will be able to withstand this 

level of neutron irradiation for 30 years of continuous operation. 

o Reactor operators could safely stand less than a meter from 

the reactor for extended periods. 



Basic configuration 

PFRC – RMFo-heated fusion-reactor rocket engine operates with D-3He 

reaction, generating all charged particles: 

 
 

Charged particles can be contained in magnetic field, so more energy and 

directed momentum are available for power and thrust. 

2D + 3He -> 4He + 1p + 18.3MeV 

Neutron shielding 

Princeton Field Reversed Configuration 

  RMFo  

antenna 



Neutrons are produced from side fusion reactions: 
 

2D + 2D -> 3T (1.01MeV) + 1p (3.01MeV) 

  -> 3He (.82MeV) + 1n (2.45MeV) 

 
2D + 3T -> 4He (3.5MeV) + 1n (14.1MeV) 

The residual neutron problem with D-3He 



Reducing Neutron Production via a PFRC 

PFRC reduces neutron production by: 

1. Burning D-3He 

2. Being smaller (x4) 

3. Removing produced tritons (x20) 

4. Using a 3He-rich fuel mixture (x6) 

5. Operating with different D and 3He 

energy distributions 



RAPID triton loss into SOL of small FRC 

M. Chu-Cheong 

s = 0.3rs/ri  
SOL 

Separatrix 

Trajectory of Triton slowing down in 25 cm radius FRC 



PFRC rocket engine parameters 

Triton losses:  30-cm radius, 6.8-T FRC 

       82% lost in 0.1 s, then 17% lost in next 0.1 s, while T burn-up time ~ 12 s 



Neutron Radiation Damage to Materials 

● Microscopic:  

o Changes in the lattice 

organization of the material 

(displaces atoms (DPA), 

creates interstitials) 

o Excitation of atoms, heating 

o Activation - induced 

radioactivity in materials 
 

Source: "Neutron Radiation." Examples of Defects in Lattice Structure 



Types of Neutron Radiation Damage 

● Macroscopic:  

o Embrittlement 

o Swelling - problem for ceramics, can complicate 

coolant flows especially in small channels 

o Production of He, later forming gas bubbles  

o Production of heat 

o Lowering of superconductor critical current (Ic), critical 

magnetic field (Bc), and critical temperature (Tc). 
 

 

 

 

Source: "Development of Radiation Resistant Reactor Core Structural Material." 



Neutron risks to humans 

● Considered most dangerous type of radiation to 

humans due to high kinetic energy 

● Up to 10x more damaging than gamma or beta 

particles 

● Activation causes release of gamma and beta 

radiation 
 

Source: "Neutron Radiation." 



Background Summary 

● Neutron wall load would be far smaller in the 

PFRC than in D-T burning reactors 

● Nevertheless, some neutrons will be produced 

● Damaging neutron effects to both materials and 

nearby people should be mitigated by shielding 



Reducing the residual neutron risk:  

                                               Reactor Materials 
● Shielding: Boron Carbide (B4C): B-10 enriched reduces 

required thickness (and weight) 

● Cooling Channels with Tungsten foil inserts (for absorbing 

Bremsstrahlung), modeled as thin innermost layer 

● Superconducting Coils: YBCO - superconductivity to 105K, but 

planned operation at 77K  

● RF Antenna: Copper 

Plasma 

Shielding 

Coils 

RMF 

    Antenna 

W 



Neutron Shielding with B4C 
Absorption Cross Sections of B-10 (above) and B-11 (below) 

Very large absorption cross 

section by 10B. 

 

Naturally occurring Boron 

mixture:  

 20% B-10  

 80% B-11 

 

Future work will consider 

moderators, e.g., H2 or D2  

or H2O.  
 

 

10B 

11B 



Device Dosage Tolerances 

Heating 
● Nuclear heating very small 

relative to Bremsstrahlung & 

synchrotron radiations (1% of 

energy compared to 40%) 

● Minor concern for high 

temperature 

superconductors 

DPA 
● Structural degradation in 

steels at ~ 50 DPA ~ 7x1026 

n/m2 

● High-T superconductors: 

limited data: improved 

performance at low doses 

but 10% degradation in Ic at 

6x1022 n/m2  

● Not well studied for B4C 



Device Dosage Tolerances 

Swelling 
● Material swelling of even a few 

% would increase lengthwise 

dimension by several cm 

● Ideally keep this << 1% in 

shielding 

● Difficult to estimate, requires 

detailed experiments 

Flux 
● Concern for superconductor 

materials, human operators. Can 

be a form of ionizing radiation 

● Fluence limit for YBCO of 6x1021 

n/m2 (with KE > 0.1 MeV) for a 

TC drop ~ 5% 

● According to OHSA for 2.5 MeV: 

limit of 3.7x1013 neutrons/m2 per 

calendar quarter for humans 



Attila 

Particle simulation (neutron transport) code 

that solves problems in space, angle and 

energy 

● A model mesh is a refinement in space 

● The scattering order refines the angles 

considered in particle interactions. 

● Energy groupings split different energy 

neutrons into groups that are evaluated 

together. 

Attila Generated 3D Mesh (113,000 Cells) 

 http://www.transpireinc.com/html/attila/  



Average Nuclear Heating 

Heating for Model with 20cm of 

B4C 
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DPA 

DPA for Model with 20cm of 

B4C 

DPA limit for steel ~ 50. 
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Neutron Flux 

log(Flux) for 20cm of B4C 

With 39.2cm of enriched shielding, 30-year peak fluence in superconductors ~ 

6x1021 m-2. A 1- year mission would require 21.8 cm of enriched B4C, 

corresponding to 1.1 x103 ???kg/m for r(B4C) = 2.4 gm/cc. 

 

1.00E+16

1.00E+18

1.00E+20

0 10 20 30 40 50

N
e
u

tr
o

n
 F

lu
e

n
c
e
 

(n
e

u
tr

o
n

s
/c

m
^

2
) 

Shielding Thickness (cm) 

Conductor Fluence 

30 Year Life Span

207 Day Life Span

Tolerable Fluence



Human exposure: Neutron Flux Regulations 

OSHA Regulations- 2.5 MeV neutrons: 3.7x 1013 neutrons/m2 per quarter year 
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Helium Production 
The majority of He production occurs in B4C. With proper 

channeling, this amount could be easily removed from the shielding. 

He production for model with 

20cm of B4C 
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Conclusions 

● Neutron flux, nuclear heating, DPA, and 

helium production are at least 100 times less 

in the PFRC than in a D-T reactor. 

● With modest shielding, materials in the 

PFRC could withstand 30 years of operation. 

● Enriched B4C would decrease the amount of 

shielding needed but is not essential. 



 

Future Areas of Research 

● Examine activation of materials. 

● How do results change with addition of 14MeV 

neutrons from D-T reactions? 

● Investigate effects of neutron irradiation on 

new materials in detail (YBCO, BiSCCO) 

● Consider use of low Z moderators. 
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